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ABSTRACT

Semiparametric procedures for prediction of total genetic value for quantitative traits, which make use
of phenotypic and genomic data simultaneously, are presented. The methods focus on the treatment
of massive information provided by, e.g., single-nucleotide polymorphisms. It is argued that standard
parametric methods for quantitative genetic analysis cannot handle the multiplicity of potential inter-
actions arising in models with, e.g., hundreds of thousands of markers, and that most of the assumptions
required for an orthogonal decomposition of variance are violated in artificial and natural populations.
This makes nonparametric procedures attractive. Kernel regression and reproducing kernel Hilbert
spaces regression procedures are embedded into standard mixed-effects linear models, retaining additive
genetic effects under multivariate normality for operational reasons. Inferential procedures are presented,
and some extensions are suggested. An example is presented, illustrating the potential of the methodology.
Implementations can be carried out after modification of standard software developed by animal breeders
for likelihood-based or Bayesian analysis.

MASSIVE quantities of genomic data are now avail-
able, with potential forenhancingaccuracyofpre-

diction of genetic value of, e.g., candidates for selection
in animal and plant breeding programs or for molec-
ular classification of disease status in subjects (Golub

et al. 1999). For instance, Wong et al. (2004) reported a
genetic variation map of the chicken genome containing
2.8 million single-nucleotide polymorphisms (SNPs)
and demonstrated how the information can be used for
targeting specific genomic regions. Likewise, Hayes et al.
(2004) found 2507 putative SNPs in the salmon genome
that could be valuable for marker-assisted selection in
this species.

The use of molecular markers as aids in genetic
selection programs has been discussed extensively. Im-
portant early articles are Soller and Beckmann (1982)
and Fernando and Grossman (1989), with the latter
focusing on best linear unbiased prediction of genetic
value when marker information is used. Most of the
literature on marker-assisted selection deals with the
problem of locating one or few quantitative trait loci
(QTL) using flanking markers. However, in the light of
current knowledge about genomics, the widely used
single-QTL search approach is naive, since there is evi-
dence of abundant QTL affecting complex traits, as
discussed, e.g., by Dekkers and Hospital (2002). This

would support the infinitesimal model of Fisher (1918)
as a sensible statistical specification for many quantita-
tive traits, with complications being the accommoda-
tion of nonadditivity and of feedbacks (Gianola and
Sorensen 2004). Dekkers and Hospital (2002) ob-
serve that existing statistical methods for marker-assisted
selection do not deal well with complexity posed by
quantitative traits. Some difficulties are: specification of
‘‘statistical significance’’ thresholds for multiple testing,
strong dependence of inferences on model chosen (e.g.,
number of QTL fitted, distributional forms), inade-
quate handling of nonadditivity, and ambiguous inter-
pretation of effects in multiple-marker analysis, due to
collinearity.

Here, we discuss how large-scale molecular informa-
tion, such as that conveyed by SNPs, can be employed
for marker-assisted prediction of genetic value for quan-
titative traits in the sense of, e.g., Meuwissen et al.
(2001), Gianola et al. (2003), and Xu (2003). The focus
is on inference of genetic value, rather than detection
of quantitative trait loci. A main challenge is that of
positing a functional form relating phenotypes to SNP
genotypes (viewed as thousands of possibly highly co-
linear covariates), to polygenic additive genetic values,
and to other nuisance effects, such as sex or age of an in-
dividual, simultaneously.

Standard quantitative genetics theory gives a mecha-
nistic basis to the mixed-effects linear model, treated
either from classical (Sorensen and Kennedy 1983;
Henderson 1984) or from Bayesian (Gianola and
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Fernando 1986) perspectives. Meuwissen et al. (2001)
and Gianola et al. (2003) exploit this connection and
suggest highly parametric structures for modeling rela-
tionships between phenotypes and effects of hundreds
or thousands of molecular markers. A first concern is
the strength of their assumptions (e.g., linearity, multi-
variate normality, proportion of segregating loci, spatial
within-chromosome effects); it is unknown if their pro-
cedures are robust. Second, colinearity between SNP or
marker genotypes is bound to exist, because of the sheer
massiveness of molecular data plus cosegregation of
alleles. While adverse effects of colinearity can be tem-
pered when marker effects are treated as random vari-
ables, statistical redundancy is undesirable (Lindley
and Smith 1972).

The genome seems to be much more highly in-
teractive than what standard quantitative genetic mod-
els can accommodate (e.g., D’Haeseleer et al. 2000). In
theory, genetic variance can be partitioned into orthog-
onal additive, dominance, additive3 additive, additive3
dominance, dominance3 dominance, etc., components,
onlyunderhighly idealizedconditions.Theseincludelink-
age equilibrium, absence of natural or artificial selection,
and no inbreeding or assortative mating (Cockerham
1954; Kempthorne 1954). Arguably, these conditions
are violated in nature and in breeding programs. Ac-
tually, marker-assisted selection exploits existence of
linkage disequilibrium, and even chance creates dis-
equilibrium. Further, estimation of nonadditive compo-
nents of variance is notoriously difficult, even under
standard assumptions (Chang 1988). Therefore, it is
doubtful whether or not standard quantitative genetic
approaches can model fine-structure relationships be-
tween genotypes and phenotypes adequately, unless
either departures from assumptions have mild effects
or statistical constructs based on multivariate normality
turn out to be more robust than what is expected
on theoretical grounds. These considerations suggest
that a nonparametric treatment of the data could be
valuable.

On the other hand, application of the additive
genetic model in selective breeding of livestock has
produced remarkable dividends, as shown in Dekkers

and Hospital (2002). Hence, a combination of non-
parametric modeling of effects of molecular variables
(e.g., SNPs) with features of the additive polygenic mode
of inheritance is appealing.

Our objective is to present semiparametric methods
for prediction of genetic value for complex traits that
make use of phenotypic and genomic data simulta-
neously. This article is organized as follows. kernel

regression on snpmarkers introduces nonparametric
regression, kernel functions, and smoothing parame-
ters and proposes a nonparametric approximation to
additive genetic value. Next, semiparametric kernel

mixed model combines features of kernel regression
with the mixed-effects linear model and describes

classical and Bayesian implementations. reproducing
kernel hilbert spaces mixed model uses established
calculus of variations results and hybridizes the mixed-
effects linear model with a regression on kernel basis
functions. Estimation procedures are presented, the
problem of incomplete genotyping is addressed, and a
simulated example is given, to illustrate feasibility and
potential. The article concludes with a discussion and
with suggestions for additional research.

KERNEL REGRESSION ON SNP MARKERS

The regression function: Consider a stylized situation
in which each of a series of individuals possesses a
measurement for some quantitative trait denoted as y,
as well as information on a possibly massive number
of genomic variables, such as SNP ‘‘genotypes,’’ repre-
sented by a vector x. In the main, x is treated as a
continuously valued vector of covariates, even though
SNP genotypes are discrete (coding is done via dummy
variates). Also, x could represent gene expression mea-
surements from microarray experiments; here, it would
be legitimate to regard this vector as continuous. Al-
though gene expression measurements are typically
regarded as response variables, there are contexts in
which this type of information could be used in an
explanatory role (Mallick et al. 2005).

Let the relationship between y and x be represented as

yi ¼ g ðxiÞ1 ei ; i ¼ 1; 2; . . . ; n; ð1Þ

where yi is a measurement, such as plant height or body
weight, taken on individual i, xi is a p 3 1 vector of
dummy SNP or microsatellite covariates observed on i,
and g(.) is some unknown function relating these ge-
notypes to phenotypes. Define g(xi) ¼ E(yi j xi) as the
conditional expectation function, that is, the mean
phenotypic value of an infinite number of individuals,
all possessing the p-dimensional genotype xi. ei� (0, s2)
is a random residual, distributed independently of xi

and with variance s2.
The conditional expectation function is

g ðxÞ ¼
Ð
ypðx; yÞdy
pðxÞ : ð2Þ

Following Silverman (1986), consider a nonparametric
kernel estimator of the p-dimensional density of the
covariates,

p̂ðxÞ ¼ 1

nhp
Xn
i¼1

K

 
xi � x

h

!
; ð3Þ

where K ððxi � xÞ=hÞ is a kernel function and h is a
window width or smoothing parameter. In (3), x is the
value (‘‘focal point’’) at which the density is evaluated
and xi (i ¼ 1, 2, . . . ,n) is the observed p-dimensional
SNP genotype of individual i in the sample. Hence, (3)
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estimates population densities (or frequencies). If p̂ðxÞ
is to behave as a multivariate probability density func-
tion, then it must be true that the kernel function is
positive and that the conditionð‘

�‘

p̂ðxÞdx ¼ 1

nhp
Xn
i¼1

ð‘
�‘

K
xi � x

h

� �
dx ¼ 1

is satisfied. This implies thatð‘
�‘

1

hp
K

xi � x

h

� �
dx ¼ 1:

Similarly, and assuming that a single h parameter suf-
fices, one can estimate the joint density of phenotype
and genotypes at point (y, x) as

p̂ðx; yÞ ¼ 1

nhp11

Xn
i¼1

K
yi � y

h

� �
K

xi � x

h

� �
;

where K ððyi � yÞ=hÞ is also a kernel function; again, yi is
the observed sample value of variable y in individual i.
The numerator of (2) can be estimated asð
yp̂ðx; yÞdy ¼

ð
y

1

nhp11

Xn
i¼1

K
yi � y

h

� �
K

xi � x

h

� �
dy

¼ 1

nhp
Xn
i¼1

1

h

ð
yK

yi � y

h

� �
dy

� �
K

xi � x

h

� �
: ð4Þ

In (4), let z ¼ y � yið Þ=h, so that dy ¼ hdz and

1

h

ð
yK

yi � y

h

� �
dy ¼ yi

ð
K ðzÞdz1 hEðzÞ:

The kernel function is typically a proper probability
density function chosen such that

Ð
K ðzÞdz ¼ 1 and

EðzÞ ¼
Ð
zK ðzÞdz ¼ 0. If so, the preceding expression is

equal to yi, so that (4) becomesð
yp̂ðx; yÞdy ¼ 1

nhp
Xn
i¼1

yiK
xi � x

h

� �
: ð5Þ

Returning to (2), one can form the nonparametric
estimator

Êðy j xÞ ¼ ĝ ðxÞ ¼
Ð
yp̂ðx; yÞdy
p̂ðxÞ ;

which, upon replacing the numerator and denominator
by (5) and (3), respectively, takes the form

ĝ ðxÞ ¼
Xn
i¼1

wiðxÞyi ; ð6Þ

where

wiðxÞ ¼
K ððxi � xÞ=hÞP
n
i¼1 K ððxi � xÞ=hÞ

is a weight that depends on the kernel function and
window width chosen and on the xi (i.e., genotypes)
observed in the sample. The linear combination of the
observations (6) is called the Nadaraya–Watson estimator
of the regression function (Nadaraya 1964; Watson

1964). As seen in (6), the fitted value at coordinate x is a
weighted average of all data points, with the value of the
weight depending on the ‘‘proximity’’ of xi to x and on
the value of the smoothing parameter h. For instance, if
the kernel function has the Gaussian form

K
xi � x

h

� �
¼ 1

ð2pÞp=2
exp �1

2

xi � x

h

� �
9 xi � x

h

� �� �
;

this has a maximum value of ð2pÞ�ðp=2Þ when x ¼ xi and
tails off to 0 as the distance between x and xi increases.
The values of wi(x) decrease more abruptly as h/ 0.
This is the reason why this type of estimator is called
‘‘local,’’ in the sense that observations with xi coordi-
nates closer to the focal point x are weighted more
strongly in the computation of the fitted value Êðy j xÞ.

A specification that is more restrictive than (1) is the
additive regression model

g ðxiÞ ¼
Xp
j¼1

Eðyi j xijÞ ¼
Xp
j¼1

gjðxijÞ ð7Þ

(Hastie and Tibshirani 1990; Fox 2005), where xij is
the genotype for SNP j in individual i. In this model each
of the ‘‘partial regression’’ functions is two-dimensional,
thus allowing exploration of effects of individual SNPs
on phenotypes, albeit at the expense of ignoring, e.g.,
epistatic interactions between genotypes. A preliminary
examination of relationships can be done via calcula-
tion of Nadaraya–Watson estimators of each of the gj(.)
as

ĝjðxÞ ¼
P

n
i¼1 K ððxij � xÞ=hÞyiP
n
i¼1 K ððxij � xÞ=hÞ ; j ¼ 1; 2; . . . ; p;

where the kernels are unidimensional. Naturally, one
may wish to account for interactions between SNPs, so
this type of analysis would be merely exploratory. A
specification that is intermediate between (7) and (1)
could include sums of single, pairwise, tripletwise, etc.,
SNP regression functions.

Impact of window width: The scatter plot shown in
Figure 1, from Chu and Marron (1991), consists of
data on log-income and age of 205 people. The solid
line in Figure 1A is a moving weighted average of the
points, with weights proportional to the curve at the
bottom. Chu and Marron (1991) regard the dip in
average income in the middle ages as ‘‘unexpected.’’
Figure 1B gives results from three different smooths at
window widths of 1, 3, and 9. When h ¼ 1, the curve
displays considerable sampling variation or roughness.
On the other hand, when h¼ 9, local features disappear,
because points that are far apart receive considerable
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weight in the fitting procedure. If the dip is not an
artifact, the oversmoothing results in a ‘‘bias.’’ Hence, h
must be gauged carefully.

Marron (1988) and Chu and Marron (1991) dis-
cuss data-driven procedures for assessing h. Silverman
(1986) gives a discussion in the context of density esti-
mation, whereas Mallick et al. (2005) consider Hilbert
spaces kernel regression, with h treated as an unknown
parameter. A conceptually simple and intuitively ap-
pealing procedure is cross-validation (e.g., Schucany
2004). For instance, in the ‘‘leave-one-out’’ procedure,
the datum for case i, that is (yi, xi), is deleted, and a fit is
carried out on the basis of the other n � 1 cases. Then,
the prediction ĝi;�iðxi j hÞ of yi is formed, where the
notation �i indicates that all data other than that for
case i are used for estimating the regression function.
This process is repeated for all n data points. Sub-
sequently, the cross-validation criterion

CVðhÞ ¼
P

n
i¼1½yi � ĝi;�iðxi j hÞ�2

n

is formed. A cross-validation estimate of h is the mini-
mizer of CV(h); this is found by carrying out the compu-
tations over a grid of h-values. Hart and Lee (2005),
however, present evidence of large variability of the
leave-one-out estimates of h. Hastie et al. (2001) discuss
alternatives based on leaving out 10–20% of the sample
values. Ruppert et al. (2003) present procedures for
simple calculation of cross-validation statistics.

D. Gulisija, D. Gianola and K. A. Weigel (unpub-
lished results) used another nonparametric procedure,
LOESS, to study the relationship between performance
and inbreeding in Jersey cows. There is some relation-
ship between LOESS and kernel regression. In LOESS,
the number of points contributing to a focal fitted
value is fixed (contrary to kernel regression, where the
actual number depends on the gentleness of the kernel
chosen) and governed by a spanning parameter. This
parameter (ranging between 0 and 1) is equivalent to h
and dictates the fraction of all data points that contrib-
ute toward a fitted value. Figure 2 gives a LOESS fit
for protein yield (actually, residuals from a parametric
model) and 100 bootstrap replicates, illustrating un-
certainty about the regression surface. Without getting
into details, note that yield decreases gently at low values
of inbreeding, followed by a faster linear decline, and
then by an apparent increase. Irrespective of the var-
iability (due to that few animals were either noninbred
or highly inbred), neither the change of rate at low
inbreeding nor the increase in yield at high consan-
guinity would be predicted by standard quantitative
genetics theory. This is another illustration of how
‘‘irregularities’’ can be discovered nonparametrically,
which would remain hidden otherwise.

Figure 1.—Impact of window width on the regression func-
tion of log-income on age (Chu and Marron 1991). (A) Scat-
ter plot and (B) smooths for earning power data. Kernel is
N(0, 1). Window widths are represented by curves: solid curves,
h ¼ 3; dotted curves, h ¼1; dashed curves, h ¼ 9.

Figure 2.—LOESS curves of protein yield deviations (EBLUP)
in Jersey cows against their inbreeding coefficients (F, %).
The thick curve is the fitted regression (second-degree local
polynomial, spanning parameter ¼ 0.9); the other curves are
100 bootstrap replicates.

1764 D. Gianola, R. L. Fernando and A. Stella



Estimation of linear approximation: If the kernel
function is a probability density function, the non-
parametric density estimator (3) will be a density func-
tion as well, retaining differentiability properties of the
kernel (Silverman 1986). Consider E (y j x) ¼ g(x) and
suppose that one is interested in inferring a linear
approximation to g(x) near some fixed point x* such as
the mean value of the covariates; this leads to a nonpara-
metric counterpart of additive genetic value. From a
plant and animal breeding point of view, the concept
of breeding value is essential in parametric models, so
it seems important to develop a nonparametric coun-
terpart as well. The linear function is

Eapprðy j xÞ ¼ g ðx*Þ1 ġðx*Þ9ðx � x*Þ; ð8Þ

where

ġðx*Þ ¼ @

@x
g ðxÞ

����
x¼x*

is the gradient of g(x) at x ¼ x*. This suggests the
pseudomodel

yi � g ðx*Þ1 ġðx*Þ9ðx � x*Þ1 ei ; i ¼ 1; 2; . . . ;n ð9Þ

and the approximate variance decomposition

VarðyÞ � ġðx*Þ9VarðxÞġðx*Þ1s2: ð10Þ

The first term in the expression above can be inter-
preted as the variance contributed by the linear effect
of x in the neighborhood of x*. Further, if x is a vector
of genotypes for molecular markers, this would be,
roughly, the additive variance ‘‘due to’’ markers.

A nonparametric estimator of (8) is given by

Êapprðy j xÞ ¼ ĝ ðx*Þ1 ˆ̇gðx*Þ9ðx � x*Þ; ð11Þ

where

ĝ ðx*Þ ¼
P

n
i¼1 yiK xi � x*ð Þ=hð ÞP
n
i¼1 K xi � x*ð Þ=hð Þ ¼

Xn
i¼1

wiðx*Þyi ; ð12Þ

and ˆ̇gðx*Þ is an estimate of the vector of first derivatives
of g(x) with respect to x, evaluated at x*. The estimate
could be the gradient of (6),

ˆ̇gðx*Þ ¼
Xn
i¼1

yi
@

@x

K ððxi � xÞ=hÞP
n
i¼1 K ððxi � xÞ=hÞ

� �����
x¼x*

¼
Xn
i¼1

yi ½diðx*Þ � wiðx*Þrðx*Þ�; ð13Þ

where

diðx*Þ ¼ K̇ xi � x*ð Þ=hð ÞP
n
i¼1 K xi � x*ð Þ=hð Þ;

K̇
xi � x*

h

� �
¼ @

@x
K

xi � x*

h

� �����
x¼x*

;

and

rðx*Þ ¼
P

n
i¼1 K̇ xi � x*ð Þ=hð ÞP
n
i¼1 K xi � x*ð Þ=hð Þ ¼

Xn
i¼1

diðx*Þ

are vectors whose form depends on the kernel function
used. Hence, (11) becomes

Ê apprðy j xÞ

¼
Xn
i¼1

wiðx*Þyi 1
Xn
i¼1

yi ½diðx*Þ � wiðx*Þrðx*Þ�
( )

9
ðx � x*Þ:

ð14Þ
Likewise, an estimator of the variance contributed to
(10) by the linear effect of x (nonparametric additive ge-
netic variance from the SNPs) is given by bg9ðx*Þ �dVarðxÞbg9ðx*Þ, where dVarðxÞ is some estimate of the
covariance matrix of x. Finally, the relative contribution
to variance made by the linear effect of x(t2) can be
assessed as

t̂2 ¼
bg9ðx*ÞdVarðxÞbg9ðx*Þbg9ðx*ÞdVarðxÞbg9ðx*Þ1 ŝ2;

ð15Þ

where ŝ2 is an estimate of s2, such as

ŝ2 ¼
P

n
i¼1 yi � ĝ ðx*Þ � ˆ̇gðx*Þ9ðxi � x*Þ
� 	2

n
: ð16Þ

Gaussian kernel: A p-dimensional Gaussian kernel
with a single band width parameter h has the form

K
xi � x

h

� �
¼ 1

ð2pÞp=2
exp � 1

2h2ðxi � xÞ9ðxi � xÞ
� �

;

so that the estimator of the density at x is the finite
mixture of Gaussians,

p̂ðxÞ ¼ 1

n

Xn
i¼1

1

hp
K

xi � x

h

� �
¼ 1

nhp
Xn
i¼1

1

ð2h2pÞp=2
exp �SiðxÞ

2h2

� �
;

where, for xi ¼ [xi1 xi2 . xip]9, at focal x ¼ [x1 x2 . xp]9

SiðxÞ
h2 ¼ xi � x

h

� �
9 xi � x

h

� �
¼
Pp

k¼1ðxik � xkÞ2

h2 :

The weights entering into estimator (6) are then

wiðxÞ ¼
exp � SiðxÞ=2h2


 �� 	P
n
i¼1 exp � SiðxÞ=2h2


 �� 	:
The fitted surface is given by

Êðy j xÞ ¼
P

n
i¼1 exp � SiðxÞ=2h2


 �� 	
yiP

n
i¼1 exp � SiðxÞ=2h2


 �� 	 ¼ v9ðxÞy
v9ðxÞ1; ð17Þ
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where y is the n 3 1 vector of data points, 1 is an n 3 1
vector of ones, and v9(x) is an n 3 1 vector with typical
element

viðxÞ ¼ exp �SiðxÞ
2h2

� �
; i ¼ 1; 2; . . . ;n:

Consider next the linear approximation in (14).
Using (17), write

Ê
appr
Gaussðy j xÞ ¼ ĝ ðx*Þ1 ˆ̇gðx*Þ9ðx � x*Þ

¼ v9ðx*Þy
v9ðx*Þ11

ˆ̇gðx*Þ9ðx � x*Þ:

Now, for a Gaussian kernel,

K̇
xi � x

h

� �
¼ @

@x
K

xi � x

h

� �
¼ ðxi � xÞ

h2 K
xi � x

h

� �
:

Further,

diðxÞ ¼
K̇ððxi � xÞ=hÞP
n
i¼1 K ððxi � xÞ=hÞ ¼

ðxi � xÞwiðxÞ
h2 ;

and

rðxÞ ¼
Xn
i¼1

diðx*Þ ¼
Xn
i¼1

ðxi � xÞwiðxÞ
h2 :

Hence

ˆ̇gðx*Þ ¼
Xn
i¼1

yi ½diðx*Þ � wiðx*Þrðx*Þ�

¼
Xn
i¼1

yi
ðxi � x*Þwiðx*Þ

h2

�

�wiðx*Þ
Xn
i¼1

ðxi � x*Þwiðx*Þ
h2

�

¼
P

n
i¼1 wiðx*Þyiðxi � x*Þ � ĝðx*Þ

P
n
i¼1ðxi � x*Þwiðx*Þ

h2 ;

and

Êapprðy jxÞ ¼ v9ðx*Þy
v9ðx*Þ1

1

P
n
i¼1 wiðx*Þyiðxi � x*Þ � ĝðx*Þ

P
n
i¼1 wiðx*Þðxi � x*Þ

h2

3 ðx� x*Þ:

Kernels for discrete covariates: For a biallelic SNP,
there are three possible genotypes at each ‘‘locus,’’ as in
stylized Mendelian situations. In a standard (paramet-
ric) analysis of variance representation, incidence sit-
uations (or additive and dominance effects at each of
the loci) are described via two dummy binary variables
per locus, and all corresponding epistatic interactions
can be assessed from effects of cross-products of these
variables. This leads to a highly parameterized structure
and to formidable model selection problems.

Consider now the nonparametric approach. For an x
vector with p coordinates, its statistical distribution is
given by the probabilities of each of the 3p combinations
of binary outcomes. With SNPs, p can be very large
(possibly much larger than n), so it is hopeless to esti-
mate the probability distribution of genotypes accurately
from observed relative frequencies, and smoothing is
required (Silverman 1986). Kernel estimation extends
as follows: for binary covariates the number of disagree-
ments between a focal x and the observed xi in subject i
is given by

dðx; xiÞ ¼ ðxi � xÞ9ðxi � xÞ;

where d(.) takes values between 0 and p. For illustration,
suppose that one has genotype AABbccDd as focal point
and that individual i in the sample has been genotyped
as aaBbccDD. The vectors of binary covariates for the
focal and observed cases (save for an intercept) are
given in the matrix

Genotype AA Aa aa BB Bb bb CC Cc cc DD Dd dd

Observed 0 0 1 0 1 0 0 0 1 1 0 0
Focal 1 0 0 0 1 0 0 0 1 0 1 0
Agree N Y N Y Y Y Y Y Y N N Y,

where N (Y) stands for disagreement (agreement).
Then, d(x, xi) ¼ 4, which is twice the number of dis-
agreements in genotypes because there are only 2 ‘‘d.f.’’
per locus. In practice, one should work with a represen-
tation of incidences that is free of redundancies. For
binary covariates, Silverman (1986) suggests the ‘‘bi-
nomial’’ kernel

K ðx; xi ; hÞ ¼ hp�dðx;xiÞð1 � hÞdðx;xiÞ;

with 1
2# h# 1; alternative forms of the kernel function

are discussed by Aitchison and Aitken (1976) and
Racine and Li (2004). It follows that the kernel estimate
of the probability of observing the focal value x is

p̂ðxÞ ¼ 1

n

Xn
i¼1

hp�dðx;xiÞð1 � hÞdðx;xiÞ: ð18Þ

If h ¼ 1, the estimate is just the proportion of cases for
which xi ¼ x; if h ¼ 1

2, every focal point gets an estimate
equal to 1=2ð Þp , irrespective of the observed values x1,
x2, . . . , xn.

The nonparametric estimator of the regression func-
tion is

ĝ ðxÞ ¼
P

n
i¼1 h

p�dðx;xiÞð1 � hÞdðx;xiÞyiP
n
i¼1 h

p�dðx;xiÞð1 � hÞdðx;xiÞ :

Since a discrete distribution does not possess deriva-
tives, the additive genetic value must be defined in the
classical sense (e.g., Falconer 1960), that is, by defining
contrasts between expected values of individuals having
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appropriate genotypes. Here, one can use either the
vectorial representation g xð Þ or the concept of the ad-
ditive regression model in (7). Hereinafter, it is assumed
that the distribution of x is continuous, and a continu-
ous kernel function is employed throughout, as an
approximation.

SEMIPARAMETRIC KERNEL MIXED MODEL

General considerations: Consider now a situation for
which there might be an operational or mechanistic
basis for specifying at least part of a model. For instance,
suppose that y is a measure on some quantitative trait,
such as milk production of a cow. Animal breeders have
exploited to advantage the infinitesimal model of quan-
titative genetics (Fisher 1918). Vectorial representations
of this model are given by Quaas and Pollak (1980),
and applications to natural populations are discussed
by Kruuk (2004). In this section, we combine features
of the infinitesimal model with a nonparametric treat-
ment of genomic data and present semiparametric
implementations.

Statistical specification: Model (1) is expanded as

yi ¼ w9ib1 z9iu1 g ðxiÞ1 ei ; i ¼ 1; 2; . . . ;n; ð19Þ

where b is a vector of nuisance location effects and u is
a q 3 1 vector containing additive genetic effects of q
individuals (these effects are assumed to be indepen-
dent of those of the markers), some of which may lack a
phenotypic record; wi9 and zi9 are known nonstochastic
incidence vectors. As before, g(xi) is some unknown
function of the SNP data. It is assumed that u �
N 0;As2

u


 �
, where su

2 is the ‘‘unmarked’’ additive genetic
variance and A is the additive relationship matrix, whose
entries are twice the coefficients of coancestry between
individuals. Let e ¼ eif g be the n3 1 vector of residuals,
and assume that e � N 0; Is2

e


 �
, where se

2 is the residual
variance. Note that the model implies that

yi � g ðxiÞ ¼ w9ib1 z9iu1 ei ð20Þ

and

yi � w9ib� z9iu ¼ gðxiÞ1 ei : ð21Þ

The preceding means that: (1) the offset yi � g(xi)
follows a standard mixed-effects model, and (2) if b and
u were known, one could use (6) to estimate g(xi) em-
ploying yi�w9ib� z9iu as ‘‘observations.’’ This suggests two
strategies for analysis of data, discussed below.

Strategy 1—mixed model analysis: This follows from
representation (20). First, estimate g(xi), for i¼ 1, 2, . . . ,
n, via ĝ ðxiÞ, as in (6) or, if a Gaussian kernel is adopted,
as in (17). Then, carry out a mixed model analysis using
the ‘‘corrected’’ data vector and pseudomodel

y* ¼ yi � ĝ ðxiÞf g ¼ Wb1Zu1 e;

where W ¼ wi9f g and Z ¼ zi9f g are incidence matrices of
appropriate order. The pseudomodel ignores uncer-
tainty about g xð Þ, since ĝ ðxiÞ is treated as if it were the
true regression (on SNPs) surface.

Under the standard multivariate normality assump-
tions of the infinitesimal model, one can estimate the
variance components su

2 and se
2 from y* via restricted max-

imum likelihood (REML) (Patterson and Thompson
1971) and form empirical best linear unbiased estima-
tors and predictors of b and u, respectively, by solving
the Henderson mixed model equations

W9W W9Z
Z9W Z9Z1A�1 s2

e=s
2
u


 �� �
b̂
û

� �
¼ W9y*

Z9y*

� �
ð22Þ

(Henderson 1973). The ratio s2
e=s

2
u is evaluated at

REML estimates of the variance components. Solving
system (22) is a standard problem in animal breeding
even for very large q, since A�1 is easy to compute. The
two-stage procedure could be iterated several times, i.e.,
use the solutions to (22), to obtain a new estimate of
g xð Þ using yi � w9ib̂� z9i û as ‘‘data,’’ and then update the
pseudodata y*, etc.

The ‘‘total’’ additive genetic effect of an individual
possessing a vector of SNP covariates with focal value x
can be defined as the sum of the additive genetic effect
of the SNPs, in the sense of (8), plus the polygenic effect
ui, that is,

TiðxÞ ¼ g ðx*Þ1 ġðx*Þ9ðx � x*Þ1ui :

An empirical predictor of Ti can be formed by adding
(14) to the ith component of û in the mixed model
equations. It is not obvious how a measure of uncer-
tainty about Ti xð Þ can be constructed using this
procedure.

A Bayesian approach can be used instead, using the
corrected data yi � ĝ ðxiÞ as observations. Under stan-
dard assumptions made for the prior and the likelihood
(e.g., Wang et al. 1993, 1994; Sorensen and Gianola

2002), one can draw samples j ¼ 1, 2, . . . , m from the
pseudoposterior distribution b;u;s2

u;s
2
e j y*

� 	
via Gibbs

sampling and then form ‘‘semiparametric’’ draws of the
total genetic value as

T
ð jÞ
i ðxÞ ¼

Xn
k¼1

wkðx*Þyk

1
Xn
k¼1

yk ½dkðx*Þ � wkðx*Þrðx*Þ�
( )

9

3 ðx � x*Þ1u
ð jÞ
i ;

for j ¼ 1, 2, . . . , m. These T
ð jÞ
i xð Þ can be construed as

draws from a semiparametric pseudoposterior distribu-
tion; one can readily calculate the means, median,
percentiles, and variance of this distribution and pro-
duce posterior summaries, leading to an approximation
to uncertainty about total genetic value.
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Irrespective of whether classical or Bayesian view-
points are adopted, this approach ignores the error of
estimation of g(x), as noted earlier.

Strategy 2—random g(.)function: The estimate of
g xð Þ can be improved as follows. Consider (21) and sup-
pose, temporarily, that b and u are known. Then, form
the offset yi � w9ib� z9iu and the alternative Nadaraya–
Watson estimator of g(xi):

ĝ ðx jb;u; y; hÞ ¼ Êðyi � w9ib� z9iu j xÞ

¼
Xn
k¼1

wkðxÞðyk � w9kb� z9kuÞ: ð23Þ

The problem is that the location vectors b and u are not
observable, so they must be inferred somehow.

Regard now b;u as unknown quantities possessing
some prior distribution, which is modified via Bayesian
learning into the pseudoposterior process b;u j y*½ �, after
observation of the pseudodata y* and of the n3 pmatrix
of observed SNP covariates X. Then, for some band
width h, ĝ ðx jb;u; y; hÞ would also be a random variable
possessing some pseudoposterior distribution. Let b jð Þ;
u jð Þ j ¼ 1; 2; . . . ;mð Þ be a draw from the pseudoposte-
rior process b;u;s2

u;s
2
e j y*; h

� 	
, as in the preceding

section. Further, regard ĝ ðx jb jð Þ;u jð Þ; y; hÞ as a draw
from the pseudoposterior distribution of ĝ ðx jb;u; y; hÞ,
given y*. Subsequently, estimate features of the pseudo-
posterior distribution of ĝ ðx jb;u; hÞ by ergodic averag-
ing. For example, an estimate of its posterior expectation
would be

Êb;ujy*;h ĝ ðx jb;u; hÞ½ � ¼ 1

m

Xm
j¼1

ĝ ðx jbð jÞ;uð jÞ; hÞ;

where the samples bð jÞ;uð jÞ are obtained via a Markov
chain Monte Carlo (MCMC) procedure from the
pseudoposterior distribution b;u;s2

u;s
2
e j y*; h

� 	
.

The MCMC procedure would consist of sequential,
iterative, sampling from all conditional pseudoposterior
distributions, as follows:

Sample b from b jELSE½ �, where ELSE denotes all other
parameters, y*, X, and h. Using standard results, this
conditional distribution has the form

b jELSE � N ðb̃;VbÞ;

where

b̃ ¼ ðW9WÞ�1W9ðy* � ZuÞ;

and

Vb ¼ ðW9WÞ�1s2
e:

Sample u from u jELSE½ �. Using similar standard results,
the distribution to sample from is

u jELSE � N ðũ;VuÞ;

where

ũ ¼ Z9Z1A�1s
2
e

s2
u

� ��1

Z9ðy* � WbÞ

and

Vu ¼ Z9Z1A�1s
2
e

s2
u

� ��1

s2
e:

Sample the two variance components from the scaled
inverse chi-square distributions

s2
u � ðu9A�1u1 nuS

2
uÞx�2

q1nu

and

s2
e � ½ðy* � Wb� ZuÞ9ðy* � Wb� ZuÞ1 neS

2
e �x�2

n1ne
:

Above, nu, Su
2 and ne, Se

2 are known hyperparameters of
independent scaled inverse chi-square priors assigned
to su

2 and se
2, respectively.

Form draws from the pseudoposterior distribution of
ĝ ðx jb;u; y; hÞ as

ĝ ðx jbð jÞ;uð jÞ; hÞ:

As usual, early draws in the MCMC procedure are
discarded as burn-in and, subsequently, m samples are
collected to infer features of interest. Note that the
procedure termed as strategy 1 gives ĝ ðxÞ as an estimate
of the relationship between phenotypes and SNP data.
In strategy 2, one can use ĝ ðx jb ¼ b;u ¼ u; hÞ instead,
where b and u are means of the pseudoposterior
distributions b j y*; h½ � and u j y*; h½ �, respectively. Under
strategy 2, a point predictor of total additive genetic
value could be

T iðxÞ ¼
Xn
i¼1

wiðx*Þ yi � wi9b� zi9uð Þ

1
Xn
i¼1

yi � wi9b� zi9uð Þ diðx*Þ � wiðx*Þrðx*Þ½ �
( )

9

3 ðx � x*Þ1ui ;

where ui is the posterior mean of ui.

REPRODUCING KERNEL HILBERT SPACES
MIXED MODEL

General: What follows is motivated by developments
in Mallick et al. (2005) for classification of tumors
using microarray data. The underlying theory is outside
the scope of this article. Only essentials are given here,
and foundations are in Wahba (1990, 1999).

Using the structure of (19), consider the penalized
sum of squares

1768 D. Gianola, R. L. Fernando and A. Stella



SS½g ðxÞ; h� ¼
Xn
i¼1

yi � w9ib� z9iu � g ðxiÞ½ �2 1 hkg ðxÞk;

ð24Þ

where, as before, h is a smoothing parameter (possibly
unknown) and kg ðxÞk is some norm or ‘‘stabilizer.’’ For
instance, in smoothing splines, kg ðxÞk is a function of
the second derivatives of g(x) integrated between end
points that compose the data. The second term in (24)
acts as a penalty: if the unknown function g(x) is rough,
in the sense of having slopes that change rapidly, the
penalty increases. The main problem here is that of
finding the function g(x) that minimizes (24). Since
SS½g ðxÞ; h� is a functional on g(x), this is a variational or
calculus of variations problem over a space of smooth
curves. The solution was given by Kimeldorf and
Wahba (1971) and Wahba (1999), and the minimizer
admits the representation

g ð:Þ ¼ a0 1
Xn
j¼1

ajK ð:; xjÞ;

where K ð:; :Þ is called a reproducing kernel. A possible
choice for the kernel (Mallick et al. 2005) is the single
smoothing parameter Gaussian function

Khðx; xjÞ ¼ exp �ðx � xjÞ9ðx � xjÞ
h

� �
:

Mixed model representation: We embed these results
into (19), leading to the specification

yi ¼ w9ib1 z9iu1
Xn
j¼1

exp �ðxi � xjÞ9ðxi � xjÞ
h

� �
aj 1 ei ;

ð25Þ

with the intercept parameter a0 included as part of b.
Note that there are as many regressions aj as there are
data points. However, the roughness penalty in the
variational problem leads to a reduction in the effective
number of parameters in reproducible kernel Hilbert
spaces (RKHS) regression, as it occurs in smoothing
splines (Fox 2002).

Define the 1 3 n row vector

t9iðhÞ ¼ exp �ðxi � xjÞ9ðxi � xjÞ
h

� �� 
; j ¼ 1; 2; . . . ;n;

the n3 1 column vector a ¼ aj

� �
, j¼ 1, 2,. . ., n; and the

n 3 n matrix

TðhÞ ¼

t91ðhÞ
t92ðhÞ
:

t9nðhÞ

2664
3775:

Then (25) can be written in matrix form as

y ¼ Wb1Zu1TðhÞa1 e:

Suppose, further, that the aj coefficients are exchange-
able according to the distribution aj � N 0;s2

a


 �
. Hence,

for a given smoothing parameter h, we are in the setting
of a mixed-effects linear model.

Given h,su
2 ,se

2, andsa
2 (at a given h, the three variance

components may be estimated by, e.g., REML) one can
obtain predictions of the polygenic breeding values u
and of the coefficients a from the solutions to the
system

W9W W9Z W9TðhÞ
Z9W Z9Z1A�1 s2

e=s
2
u


 �
Z9TðhÞ

T9ðhÞW T9ðhÞZ T9ðhÞTðhÞ1 I s2
e=s

2
a


 �
264

375
3

b̂

û

â

264
375 ¼

W9y

Z9y

T9ðhÞy

264
375: ð26Þ

The total additive genetic value of an individual possess-
ing a vector of SNP covariates xi can be defined as

Ti ¼ ui 1
@

@x

Xn
j¼1

exp �ðx � xjÞ9ðx � xjÞ
h

� �
aj

( )
x¼x*

9
ðxi � x*Þ

¼ ui 1
Xn
j¼1

exp �ðx* � xjÞ9ðx* � xjÞ
h

� �
hj*

( )
9
ðxi � x*Þ;

ð27Þ
where

hj* ¼ � 2ðx* � xjÞ9aj

h
:

Since Ti is a linear function of the unknown ui and aj

effects, its empirical best linear unbiased predictor,
assuming known h, can be obtained by replacing these
effects by the corresponding solutions from (26).

Incomplete genotyping: At least in animal breeding,
it is not feasible to have all individuals genotyped for
SNPs. On the other hand, the number of animals with
phenotypic information available is typically in the
order of hundreds of thousands, and genotyping is
selective, e.g., young bulls that are candidates for prog-
eny testing in dairy cattle production. Animals lacking
molecular data are not a random sample from the pop-
ulation, and ignoring this issue may lead to biased
inferences. Unless missingness of molecular data is ig-
norable, in the sense of, e.g., Henderson (1975), Rubin
(1976), Gianola and Fernando (1986), or Im et al.
(1989), the procedures given below require modeling of
the missing data process, which is difficult and may lack
robustness. Here, it is assumed that missingness is ig-
norable, enabling use of likelihood-based or Bayesian pro-
cedures as if selection had not taken place (Sorensen
et al. 2001). Two ad hoc procedures are discussed, and an
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alternative approach, suitable for kernel regression, is
presented in the conclusion.

Let the vector of phenotypic data be partitioned as
y ¼ y19y29

� 	
9, where y1 (n1 3 1) consists of records of in-

dividuals lacking SNP data, whereas y2 (n2 3 1) includes
phenotypic data of genotyped individuals. Often, it will
be the case that n1 . p? n2. We adopt the model

y1
y2

� �
¼ W1

W2

� �
b1

Z1

Z2

� �
u1

0
T2ðhÞ

� �
a1

e1

e2

� �
: ð28Þ

For the sake of flexibility, assume that e1 � N 0; In1
s2

e1


 �
and e2 � N ð0; In2

s2
e2
Þ are mutually independent but het-

eroscedastic vectors. In short, the key assumption made
here is that the random effect a affects y2 but not y1 or,
equivalently, that it gets absorbed into e1. With this rep-
resentation, the mixed model equations take the form

P2
i¼1

1
s2

ei

W9iWi

P2
i¼1

1
s2

ei

W9iZi
1
s2

e2

W92T2ðhÞ

P2
i¼1

1
s2

ei

Z9iWi

P2
i¼1

1
s2

ei

Z9iZi 1A�1 1
s2

u

1
s2

e2

Z92T2ðhÞ

1
s2

e2

T92ðhÞW2 T92ðhÞZ 1
s2

e2

T92ðhÞT2ðhÞ1 I 1
s2
a

26666664

37777775

3

b̂

û

â

264
375 ¼

P2
i¼1

1
s2

ei

W9iyiP2
i¼1

1
s2

ei

Z9iyi

1
s2

e2

T92ðhÞy2

26666664

37777775 ð29Þ

If SNP data are missing completely at random and h, su
2 ,

se
2, and sa

2 are treated as known, then b̂ is an unbiased
estimator of b, and û and â are unbiased predictors of
u and a, respectively. They are not ‘‘best,’’ in the sense
of having minimum variance or minimum prediction
error variance, because the smooth function g xð Þ of
the SNP markers is missing in the model for individuals
that are not genotyped (Henderson 1974).

An alternative consists of writing the bivariate model

y1
y2

� �
¼ W1

W2

� �
b1

Z1 0
0 Z2

� �
u1

u2

� �
1

0
T2ðhÞ

� �
a1

e1

e2

� �
and then assigning to the polygenic component, the
multivariate normal distribution

u1

u2

� �
�N

0
0

� �
;

As2
u1

Asu12

Asu12 As2
u2

" # !
:

Here, s2
u1

and s2
u2

are additive genetic variances in in-
dividuals without and with molecular information, re-
spectively, and su12

is their additive genetic covariance.
Computations would be those appropriate for a two-trait
linear model analysis (Henderson 1984; Sorensen and
Gianola 2002).

Bayesian analysis: To illustrate, consider the first of
the two options in the preceding section. Suppose a

kernel has been chosen but that the value of h is un-
certain, so that the model unknowns are

u ¼ b9;u9;a9;s2
u;s

2
a;s

2
e1
;s2

e2
; h

h i
9
:

Let the prior density have the form

pðu jH Þ ¼ pðbÞN u j 0;As2
u


 �
N a j 0; Is2

a


 �
3 p s2

u j nu; S
2
u


 �
p s2

a j na; S2
a


 �
p


s2

e1
j ne; S

2
e

�
3 p


s2

e2
j ne; S

2
e

�
p h j hmin; hmaxð Þ;

ð30Þ

where H denotes the set of all known hyperparameters
(whose values are fixed a priori) and N : j :; :ð Þ indicates a
multivariate normal distribution with appropriate mean
vector and covariance matrix. The four variance com-
ponentss2

u;s
2
a;s

2
e1
;s2

e2
are assigned independent scaled

inverse chi-square prior distributions with degrees of
freedom n and scale parameters S2, with appropriate sub-
scripts. Assign an improper prior distribution to each of
the elements of b and, as in Mallick et al. (2005), adopt
a uniform prior for h, with lower and upper boundaries
hmin and hmax, respectively.

Given the parameters, observations are assumed to be
conditionally independent, and the distribution adop-
ted for the sampling model is

N
y1
y2

� ����� W1b1Z1u
W2b1Z2u1T2ðhÞa

� �
;

In1s
2
e1

0

0 In2s
2
e2

" # !
:

Given h, one is again in the setting of the Bayesian
analysis of a mixed linear model, and Markov chain
Monte Carlo procedures for this situation are well
known. Under standard conjugate prior parameteriza-
tions, all conditional posterior distributions are known,
save for that of h. Hence, one can construct a Gibbs–
Metropolis sampling scheme in which conditional dis-
tributions are used for drawing b;u;a;s2

u;s
2
a;s

2
e1
;s2

e2

and a Metropolis update is employed for h.
Location effects b are drawn from a multivariate

normal distribution with mean vector and covariance
matrix

b ¼
X2

i¼1

1

s2
ei

W9iWi

 !�1

3
X2

i¼1

1

s2
ei

W9iðyi � ZiuÞ �
1

s2
e2

W92T2ðhÞa
" #

ð31Þ

and

Vb ¼
X2

i¼1

1

s2
ei

W9iWi

 !�1

; ð32Þ
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respectively. Likewise, the additive genetic effects can be
sampled from a normal distribution centered at

u ¼
X2

i¼1

1

s2
ei

Zi9Zi 1A�1 1

s2
u

 !�1

3
X2

i¼1

1

s2
ei

Z9iðyi � WibÞ �
1

s2
e2

W92T2ðhÞa
" #

ð33Þ

and with covariance matrix

Vu ¼
X2

i¼1

1

s2
ei

Z9iZi 1A�1 1

s2
u

 !�1

: ð34Þ

The conditional posterior distribution of the coeffi-
cients a is multivariate normal as well, with mean vector

a ¼ 1

s2
e2

T29ðhÞT2ðhÞ1 I
1

s2
a

 !�1
1

s2
e2

T92ðhÞðy2 � W2b� Z2uÞ

ð35Þand variance–covariance matrix

Va ¼ 1

s2
e2

T29ðhÞT2ðhÞ1 I
1

s2
a

 !�1

: ð36Þ

All four variance components have scaled inverse
chi-square conditional posterior distributions and are
conditionally independent. The conditional posterior
distributions to sample from are

s2
u jELSE � ðu9A�1u1 vuS

2
uÞx�2

q1vu
; ð37Þ

s2
a jELSE � ða9a1 naS

2
aÞx�2

n21va
; ð38Þ

s2
e1
jELSE � ½ðy1 � W1b� Z1uÞ9

3 ðy1 � W1b� Z1uÞ1 neS
2
e �x�2

n11ve
; ð39Þ

and

s2
e2
jELSE �½ðy2 � W2b� Z2u � T2ðhÞaÞ9

3 ðy2 � W2b� Z2u � T2ðhÞaÞ1 neS
2
e �x�2

n21ve
:

ð40Þ

The most difficult parameter to sample is h. Its con-
ditional posterior density can be represented as

pðh jELSEÞ ¼ F ðhÞÐ hmax

hmin
F ðhÞdh

; ð41Þ

where

F ðhÞ ¼ exp � 1

2s2
e2

"

3
Xn2

i¼1

(
yi � wi9b� zi9u

�
Xn2

j¼1

exp �ðxi � xjÞ9ðxi � xjÞ
h

� �
aj

)2#
:

Density (41) is not in a recognizable form. However, a
Metropolis algorithm (Metropolis et al. 1953) can be
tailored for obtaining samples from the distribution
h jELSE½ �. Suppose that the Markov chain is at state h[t].

A proposal value h* is drawn from some symmetric
candidate-generating distribution and accepted with
probability

g ¼ min
pðh* jELSEÞ
pðh½t� jELSEÞ

; 1

" #
:

If the proposal is accepted, then set h[t11] ¼ h*; other-
wise, stay at h[t]. If a Hastings update is employed,
instead, an adaptive proposal distribution could be,
e.g., a finite mixture of the prior density and of a scaled
inverse chi-square density f with mean value h[t] and vari-
ance hlargest � hsmallest


 �2
=12,

mðhÞ ¼ w
1

hmax � hmin
1 ð1 � wÞf ;

where hlargest and hsmallest are the largest and smallest
value of h, respectively, accepted up to time t. The weight
w in 0; 1ð Þ is assessed such that a reasonable acceptance
rate for the Metropolis–Hastings algorithm is attained.

Illustrative example: Phenotypic and genotypic val-
ues were simulated (single replication) for a sample ofN
unrelated individuals, for each of two situations. The
trait was determined either by five biallelic QTL, having
additive gene action, or by five pairs of biallelic QTL,
having additive-by-additive gene action. Under non-
additive gene action, the additive genetic variance was
null, so that all genetic variance was of the additive-by-
additive type. Heritability (ratio between genetic and
phenotypic variance) in both settings was set to 0.5.

Genotypes were simulated for a total of 100 biallelic
markers, including the ‘‘true’’ QTL; all loci were sim-
ulated to be in gametic-phase equilibrium. Since all
individuals were unrelated and all loci were in gametic-
phase equilibrium, only the QTL genotypes and the
trait phenotypes would provide information on the
genotypic value. In most real applications, the location
of the QTL will not be known, and so many loci that are
not QTL will be included in the analysis.

A RKHS mixed model was used to predict genotypic
values, given phenotypic values and genotypes at the
QTL and at all other loci. The model included a fixed
intercept a0 and a random RKHS regression coefficient
ai for each subject; additive effects were omitted from
the model, as individuals were unrelated, precluding
separation of additive effects from residuals, in the ab-
sence of knowledge of variance components. The ge-
netic value gi of a subject was predicted as

ĝi ¼ â0 1 ti9ðhÞâ;

where â0 and â were obtained by solving (26) for this
model, using a Gaussian kernel at varying functions of h.
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The mean squared error of prediction of genetic value
(MSEP) was calculated as

MSEP h;s2
e=s

2
a


 �
¼
X
i

ðgi � ĝiÞ2; ð42Þ

and a grid search was used to determine the values of
h and se

2/sa
2 that minimized (42). To evaluate the

performance of ĝi as a predictor, another sample of
1000 individuals (‘‘PRED’’) was simulated, including
genotypes, genotypic values, and phenotypes. This was
deemed preferable to doing prediction in the training
sample, to reduce dependence between performance
and (h, se

2/sa
2 ), whose values were assessed in the

training sample The genotypic values of the subjects
in PRED were predicted, given their genotypes, using ĝi .
Genotypic values were also predicted using a multiple
linear regression (MLR) mixed model with a fixed
intercept and random regression coefficients on the
linear effects of genotypes.

Results for the RKHS mixed model are in Table 1,
and those for the MLR mixed model are in Table 2,
where ‘‘accuracy’’ is the correlation between true and
predicted genetic values. When gene action was strictly
additive, the two methods (each fitting k ¼ 100 loci)
had the same accuracy, indicating that RKHS performed
well even when the parametric assumptions were valid.
On the other hand, when inheritance was purely ad-
ditive by additive, the parametric MLR was clearly out-
performed by RKHS, irrespective of the number of
loci fitted. An exception occurred at k ¼ 100 and
N ¼ 1000; here, the two methods were completely in-
accurate. However, when N was increased from 1000
to 5000, the accuracy of RKHS jumped to 0.85 (Table
1), whereas MLR remained inaccurate (Table 2). Note
that the accuracy of RKHS decreased (with N held at
1000) when k increased. We attribute this behavior to
the use of a Gaussian kernel when, in fact, covariates
are discrete.

CONCLUSION

This article discusses approaches for prediction of
genetic value using markers for the entire genome, such
as SNPs, and phenotypic measurements for complex
traits. In particular, theory for nonparametric and semi-
parametric procedures, i.e., kernel regression and repro-
ducing kernel Hilbert spaces regression, is developed.
The methods consist of a combination of features of
the classical additive genetic model of quantitative
genetics with an unknown function of SNP genotypes,
which is inferred nonparametrically. Mixed-model and
Bayesian implementations are presented. The proce-
dures can be computed using software developed by ani-
mal breeders for likelihood-based and Bayesian analysis,
after modifications.

Except for the parametric part of the model, that is,
the standard normality assumption for additive genetic
values and model residuals, the procedures attempt to
circumvent potential difficulties posed by violation of
assumptions required for an orthogonal decomposition
of genetic variance stemming from SNP genotypes
(Cockerham 1954; Kempthorne 1954). Our expec-
tation is that the nonparametric function of marker
genotypes, g xð Þ, captures all possible forms of interac-
tion, but without explicit modeling. The procedures
should be particularly useful for highly dimensional
regression, including the situation in which the num-
ber of SNP variables (p) exceeds amply the number of
data points (n). Instead of performing a selection of a
few ‘‘significant’’ markers on the basis of some ad hoc
method, information on all molecular polymorphisms
is employed, irrespective of the degree of colinearity.
This is because the procedures should be insensitive to
difficulties caused by colinearity, given the forms of the
estimators, e.g., (6) or (23). It is assumed that the as-
signment of genotypes to individuals is unambiguous,
i.e., x gives the genotypes for SNP markers free of error.

Our methods share the spirit of those of Meuwissen

et al. (2001), Gianola et al. (2003), Xu (2003), Yi et al.
(2003), Ter Braak et al. (2005), Wang et al. (2005),
and Zhang and Xu (2005), but without making strong

TABLE 1

Accuracy of predicting genotypic values using the RKHS
mixed model

Gene action N k h se
2/sa

2 Accuracy

Additive 1000 100 8920 0.0005 0.95
Nonadditive 1000 10 47 0.01 0.96
Nonadditive 1000 25 54 0.01 0.81
Nonadditive 1000 50 98 0.01 0.50
Nonadditive 1000 100 436 0.0005 0.00
Nonadditive 5000 100 300 0.0005 0.85

N is the sample size, k is the number of loci fitted in
the model, including the QTL, h is the bandwidth, and
s2

e=s
2
a is the ratio between environmental and RKHS variance.

TABLE 2

Accuracy of predicting genotypic values using the
MLR mixed model

Gene action N k se
2/sa

2 Accuracy

Additive 1000 100 32 0.95
Nonadditive 1000 10 208 0.0
Nonadditive 1000 25 748 0.18
Nonadditive 1000 50 760 0.0
Nonadditive 1000 100 328 0.0
Nonadditive 5000 100 3400 0.0

N is the sample size, k is the number of loci fitted in the
model, including the QTL, and s2

e=s
2
a is the ratio between

the environmental variance and that ‘‘due to’’ linear regression.

1772 D. Gianola, R. L. Fernando and A. Stella



assumptions about the form of the marker–phenotype
relationship, which is assumed linear by all these authors,
and without invoking parametric distributions for perti-
nent effects.

A hypothetical example was presented, illustrating
potential and computational feasibility of at least the
RKHS procedure; a standard additive genetic model was
outperformed by RKHS when additive-by-additive gene
action was simulated. Comparisons between parametric
and nonparametric procedures are needed. It is un-
likely that computer simulations would shed much light
in this respect. First, a huge number of simulation
scenarios can be envisaged, resulting from limitless com-
binations of parameter values, numbers of markers,
marker effects, residual distributions, etc. Second, sim-
ulations tend to have local value only, that is, conclu-
sions are tentative only within the limited experimental
region explored and are heavily dependent on the state
of nature assumed. Third, end points and gauges of a
simulation tend to be arbitrary. For instance, should
frequentist procedures be assessed on Bayesian grounds
and vice versa? We believe that studies based on pre-
dictive cross-validation for a range of traits and species
are perhaps more fruitful. These studies will be con-
ducted once adequate and reliable phenotypic-SNP
data sets become more widely available.

There are at least two difficulties with the proposed
methodology. As noted above, it is assumed that the
SNP genotypes are constructed without error, which
is seldom the case. To solve this problem, one would
need to build an error-in-variables model, but at the
expense of introducing additional assumptions. A se-
cond difficulty is that posed by the fact that many in-
dividuals will lack SNP information, at least in animal
breeding. Earlier, we presented approximate proce-
dures on the basis of the assumption that missingness
of SNP data is ignorable, such that the effect of g xð Þ
can be absorbed into a residual that has a different
variance from that peculiar to individuals possessing
SNP data or into the additive genetic value in a two-
trait implementation. A more appropriate treatment of
missing data requires imputation of genotypes for
individuals lacking SNP information. If the SNP data
are missing completely at random or just at random,
the solutions to system (29), after augmentation with
the missing T1 hð Þ, would give the means of the
posterior distributions of b;u, and a, conditionally
on the variance components and on h (Gianola and
Fernando 1986; Sorensen et al. 2001). However, the
sampling procedure should address the constraint
that SNP genotypes of related individuals must be
more alike than those of unrelated subjects. In our
treatment, and for operational reasons, we adopted
the simplifying assumption that SNP genotypes are
independently distributed. This may be anticonserva-
tive and could lead to some bias if SNP data are not
missing completely at random.

It is unknown to what extent our procedures are
robust with respect to the choice of kernel function.
Silverman (1986) discusses several options and, in the
context of univariate density estimation, concludes that
different kernels differ little in mean squared error.
Also, an inadequate specification of the smoothing
parameter h may affect inference adversely. In this re-
spect, the procedures discussed in reproducing kernel

hilbert spaces mixed model provide for automatic
specification of the band-width parameter. Here, one
could either make an analysis conditionally on the
‘‘most likely’’ value of h or, alternatively, average over
its posterior distribution, to take uncertainty into ac-
count fully. Here, we have focused on using a con-
tinuous kernel, primarily to exploit differentiability
properties. However, the vector of markers, x, has a dis-
crete distribution, and careful investigation is needed to
assess the adequacy of such an approximation.

A procedure to accommodate missing genotypes
in kernel regression is as follows. Replace g(xi) in (19)
by

g ðxiÞ ¼ g ðx̂iÞ1 g ðxiÞ � g ðx̂iÞ
¼ g ðx̂iÞ1 qi ; ð43Þ

where x̂i is the conditional expectation of xi given
all the observed genotypes in the pedigree, and qi ¼
g ðxiÞ � g ðx̂iÞ. The conditional expectation in (43) is a
function of the conditional probabilities of the missing
genotypes given the observed genotypes. Much research
has been devoted to computing such probabilities from
complex pedigrees using either approximations (Van
Arendonk et al. 1989; Fernando et al. 1993; Kerr and
Kinghorn 1996) or MCMC samplers (Sheehan and
Thomas 1993; Jensen et al. 1995; Jensen and Kong
1999; Fernández et al. 2002; Stricker et al. 2002).

When genotypes for individual i are observed, x̂i ¼ xi ,
and qi is null. When genotypes for i are missing, g ðx̂iÞ is
an approximation to the conditional expectation of
g(xi) given the observed genotypes, and qi is a random
variable with approximately null expectation. Now, the
genotypic value of an individual can be written as

g ðxiÞ1ui ¼ g ðx̂iÞ1 qi 1ui ; ð44Þ

where, from the linear approximation given by (9), the
variance of qi is

VarðqiÞ ¼ ġðx*Þ9Vi ġðx*Þ; ð45Þ

with Vi being the conditional covariance matrix of xi

given the observed genotypes of relatives. The jth diag-
onal in Vi is a function of the conditional probabilities
of the missing genotypes at locus j given the observed
genotypes, and the jkth off-diagonal element is a func-
tion of the conditional probabilities of the missing ge-
notypes at loci j and k given the observed genotypes. An
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estimate of Var(qi) can be obtained by replacing ġðx*Þ
by its estimate in (45).

In the simplest approach to modeling the covariances
of the qi, the random effects ui and qi are combined as

ai ¼ ui 1 qi :

Now, the model for yi is written as

yi ¼ w9ib1 g ðx̂iÞ1 z9ia1 ei : ð46Þ

An approximation to the covariance matrix Sa of a can
be obtained by using the usual tabular algorithm that is
based only on pedigree information, after setting the ith
diagonal of Sa to Var(ui) 1 Var(qi). The inverse of this
approximate Sa is sparse and it can be computed
efficiently (Henderson 1976).

Although qi is not null only for individuals with
missing genotypes, as discussed below, the observed
genotypes on relatives can provide information on the
segregation of alleles in individuals with missing geno-
types. Thus, observed genotypes can provide informa-
tion on covariances between the qi. Let qij denote the
additive genotypic value at locus j, which can be written
as

qij ¼ vm
ij 1 v

p
ij ;

where vij
m and vij

p are the gametic values of haplotypes
hij

m and hij
p. When genotype information is available at a

locus, it is more convenient to work with the gametic
values vij

m and vij
p rather than the genotypic values qij.

For an individual with missing genotypes, the variance
of vijx can be written as

VarðvxijÞ ¼
X

hxij 6¼hij9x
PrðhxijÞPrðhij9xÞðahxij

� ahij9x Þ2; ð47Þ

for x ¼ m or p, where ahm
ij

is the additive effect of
haplotype hij

m. These additive effects can be estimated
from the linear function given by (8) as follows. Let xhj

denote the value of x with all elements set to its mean
value except at locus j where one of the haplotypes is set
to hj. Then,

âhj ¼ ĝ ðx*Þ9ðxhj � x*Þ:

The covariance between vij
x and vi9j

m, for example, can
be written as

Covðvxij ; vm
i9jÞ ¼Covðvxij ; vm

dj ÞPrðhm
i9j)hm

dj Þ
1Covðvxij ; v

p
djÞPrðhm

i9j)h
p
djÞ; ð48Þ

where Prðhm
i9j)hm

dj Þ is the probability that the maternal
haplotype of i9 is inherited from the maternal haplotype
of d its dam. Suppose genotype information is available
on the ancestors of d and on the descendants of i9. Then,
the segregation probabilities in (48) may be different
from 0.5, and thus the observed genotypes will contrib-

ute information for genetic covariances at this lo-
cus. However, even in this situation, the inverse of the
gametic covariance matrix Gj for locus j that is con-
structed using (47) and (48) is sparse and it can be
computed efficiently (Fernando and Grossman 1989).

For an improved approximation to the modeling
of covariances between the qi, the model for yi is written
as

yi ¼ w9ib1 g ðx̂iÞ1
X
j2L

kj9vj 1 z9ia*1 ei ; ð49Þ

where L is the set of k loci with the largest effects on the
trait. The covariance matrix for the vector vj of gametic
values can be computed using (47) and (48). The usual
tabular method based on pedigree information is used
to compute Sa*, after setting the ith diagonal to

Var ai*ð Þ ¼ VarðaiÞ �
X
j2L

½Var vm
ij

� �
1Var v

p
ij

� �
�: ð50Þ

Our models extend directly to binary or ordered
categorical responses when a threshold-liability model
holds (Wright 1934; Falconer 1965; Gianola 1982;
Gianola and Foulley 1983). Here, the g xð Þ function
would be viewed as affecting a latent variable; Mallick

et al. (2005) used this idea in analysis of gene expression
measurements.

Extension to multivariate responses is less straightfor-
ward. It is conceivable that each trait may require a
different function of SNP genotypes. It is not obvious
how this problem should be dealt with without making
strong parametric assumptions.

In conclusion, we believe that this article gives a first
description of nonparametric and semiparametric pro-
cedures that may be suitable for prediction of genetic
value using dense marker data. However, considerable
research is required for tuning, extending, and validat-
ing some of the ideas presented here.
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